Learning Diverse Fashion Collocation by Neural Graph Filtering

نویسندگان

چکیده

Fashion recommendation systems are highly desired by customers to find visually-collocated fashion items, such as clothes, shoes, bags, etc. While existing methods demonstrate promising results, they remain lacking in flexibility and diversity, e.g. assuming a fixed number of items or favoring safe but boring recommendations. In this paper, we propose novel collocation framework, Neural Graph Filtering , that models flexible set via graph neural network. Specifically, consider the visual embeddings each garment node graph, describe inter-garment relationship edge between nodes. By applying symmetric operations on vectors, framework allows varying numbers inputs/outputs is invariant their ordering. We further include style classifier augmented with focal loss enable significantly diverse styles, which inherently imbalanced training set. To facilitate comprehensive study collocation, reorganize Amazon dataset carefully designed evaluation protocols. evaluate proposed approach three popular benchmarks, Polyvore dataset, Polyvore-D our reorganized dataset. Extensive experimental results show outperforms state-of-the-art over 10% improvements standard AUC metric. More importantly, 82.5% users prefer diverse-style recommendations other alternatives real-world perception study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Neural Knowledge Graph Learning

Previous models for learning entity and relationship embeddings of knowledge graphs such as TransE, TransH, and TransR aim to explore new links based on learned representations. However, these models interpret relationships as simple translations on entity embeddings. In this paper, we try to learn more complex connections between entities and relationships. In particular, we use a Convolutiona...

متن کامل

مدل neural-kalman filtering برای برآورد حالات ترافیکی در میادین

مسائل و مشکلات ناشی از جریان های ترافیکی علاوه بر اینکه به جامعه زیان اقتصادی می رسانند، بلکه به دلیل آسیب رسانی به طبیعت، در دراز مدت به محیط زیست نیز صدمات جبران ناپذیری وارد می سازند. چیزی که ضروری می نماید اتخاذ سریع و موثر سیاست هایی است که این مسائل و مشکلات را حل نماید. میادین به عنوان راه حلی برای رفع مشکلات ناشی از ترافیک در تقاطع ها و همچنین ایجاد سهولت و ایمنی در حرکات برخوردی ایجاد ...

15 صفحه اول

Learning Graph While Training: An Evolving Graph Convolutional Neural Network

Convolution Neural Networks on Graphs are important generalization and extension of classical CNNs. While previous works generally assumed that the graph structures of samples are regular with unified dimensions, in many applications, they are highly diverse or even not well defined. Under some circumstances, e.g. chemical molecular data, clustering or coarsening for simplifying the graphs is h...

متن کامل

Few-Shot Learning with Graph Neural Networks

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...

متن کامل

Deep Neural Networks for Learning Graph Representations

In this paper, we propose a novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information. Different from other previous research efforts, we adopt a random surfing model to capture graph structural information directly, instead of using the samplingbased method for generating linear sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Multimedia

سال: 2021

ISSN: ['1520-9210', '1941-0077']

DOI: https://doi.org/10.1109/tmm.2020.3018021